Articles in International Journals

  • [2022]   M. M. Ojo, O. J. Peter, E. F. D. Goufo, H. S. Panigoro, and F. A. Oguntolu, “Mathematical model for control of tuberculosis epidemiology,” J. Appl. Math. Comput., Apr. 2022, doi: 10.1007/s12190-022-01734-x.
  • [2021]   H. S. Panigoro, A. Suryanto, W. M. Kusumawinahyu, and I. Darti, “Dynamics of an Eco-Epidemic Predator–Prey Model Involving Fractional Derivatives with Power-Law and Mittag–Leffler Kernel,” Symmetry (Basel)., vol. 13, no. 5, p. 785, May 2021, doi: 10.3390/sym13050785.
  • [2021]   H. S. Panigoro, E. Rahmi, N. Achmad, S. L. Mahmud, R. Resmawan, and A. R. Nuha, “A discrete-time fractional-order Rosenzweig-Macarthur predator-prey model involving prey refuge,” Commun. Math. Biol. Neurosci., vol. 2021, no. 77, pp. 1–19, 2021, doi: 10.28919/cmbn/6586.
  • [2021]   H. S. Panigoro, A. Suryanto, W. M. Kusumawinahyu, and I. Darti, “Global stability of a fractional-order Gause-type predator-prey model with threshold harvesting policy in predator,” Commun. Math. Biol. Neurosci., vol. 2021, no. 2021, p. 63, 2021, doi: 10.28919/cmbn/6118.
  • [2020]   H. S. Panigoro, A. Suryanto, W. M. Kusumawinahyu, and I. Darti, “A Rosenzweig–MacArthur Model with Continuous Threshold Harvesting in Predator Involving Fractional Derivatives with Power Law and Mittag–Leffler Kernel,” Axioms, vol. 9, no. 4, p. 122, Oct. 2020, doi: 10.3390/axioms9040122.
  • [2019]   A. Suryanto, I. Darti, H. S. Panigoro, and A. Kilicman, “A Fractional-Order Predator–Prey Model with Ratio-Dependent Functional Response and Linear Harvesting,” Mathematics, vol. 7, no. 11, p. 1100, Nov. 2019, doi: 10.3390/math7111100.

 

Article in International Proceedings

  1. [2022]    H. S. Panigoro, E. Rahmi, A. Suryanto, and I. Darti, “A fractional order predator–prey model with strong Allee effect and Michaelis–Menten type of predator harvesting,” in AIP Conference Proceedings, 2022, vol. 020018, no. August, p. 020018, doi: 10.1063/5.0082684.
  2. [2021]    E. Rahmi, I. Darti, A. Suryanto, Trisilowati, and H. S. Panigoro, “Stability Analysis of a Fractional-Order Leslie-Gower Model with Allee Effect in Predator,” J. Phys. Conf. Ser., vol. 1821, no. 1, p. 012051, Mar. 2021, doi: 10.1088/1742-6596/1821/1/012051.
  3. [2020]    H. S. Panigoro, A. Suryanto, W. M. Kusumawinahyu, and I. Darti, “Continuous threshold harvesting in a Gause-type predator-prey model with fractional-order,” in AIP Conference Proceedings, 2020, vol. 2264, no. 1, p. 040001, doi: 10.1063/5.0023513.

 

Article in National Journals

  1. [2022]    H. S. Panigoro, R. Resmawan, A. T. R. Sidik, N. Walangadi, A. Ismail, and C. Husuna, “A Fractional-Order Predator-Prey Model with Age Structure on Predator and Nonlinear Harvesting on Prey,” Jambura J. Math., vol. 4, no. 2, pp. 355–366, Jul. 2022, doi: 10.34312/jjom.v4i2.15220.
  2. [2022]    R. Resmawan, L. Yahya, R. S. Pakaya, H. S. Panigoro, and A. R. Nuha, “Analisis Dinamik Model Penyebaran COVID-19 dengan Vaksinasi,” Jambura J. Biomath., vol. 3, no. 1, pp. 29–38, Jul. 2022, doi: 10.34312/jjbm.v3i1.13176.
  3. [2022]    D. Savitri, N. W. Hidajati, and H. S. Panigoro, “Implementasi algoritma genetika dalam mengestimasi kepadatan populasi jackrabbit dan coyote,” Jambura J. Biomath., vol. 3, no. 1, pp. 23–28, Jun. 2022, doi: 10.34312/jjbm.v3i1.11935.
  4. [2022]    P. K. Santra, H. S. Panigoro, and G. S. Mahapatra, “Complexity of a Discrete-Time Predator-Prey Model Involving Prey Refuge Proportional to Predator,” Jambura J. Math., vol. 4, no. 1, pp. 50–63, Jan. 2022, doi: 10.34312/jjom.v4i1.11918.
  5. [2021]   H. S. Panigoro and E. Rahmi, “Computational dynamics of a Lotka-Volterra Model with additive Allee effect based on Atangana-Baleanu fractional derivative,” Jambura J. Biomath., vol. 2, no. 2, pp. 96–103, Nov. 2021, doi: 10.34312/jjbm.v2i2.11886.
  6. [2021]   H. S. Panigoro and E. Rahmi, “The Dynamics of a Discrete Fractional-Order Logistic Growth Model with Infectious Disease,” Contemp. Math. Appl., vol. 3, no. 1, pp. 1–18, May 2021, doi: 10.20473/conmatha.v3i1.26938.
  7. [2020]    I. Darti, A. Suryanto, H. S. Panigoro, and H. Susanto, “Forecasting COVID-19 Epidemic in Spain and Italy Using A Generalized Richards Model with Quantified Uncertainty,” Commun. Biomath. Sci., vol. 3, no. 2, pp. 90–100, May 2020, doi: 10.5614/cbms.2020.3.2.1.
  8. [2020]   S. L. Mahmud, N. Achmad, and H. S. Panigoro, “Revitalisasi Danau Limboto dengan Pengerukan Endapan di Danau: Pemodelan, Analisis, dan Simulasinya,” Jambura J. Biomath., vol. 1, no. 1, pp. 31–40, Jun. 2020, doi: 10.34312/jjbm.v1i1.6945.
  9. [2020]   H. S. Panigoro, E. Rahmi, N. Achmad, and S. L. Mahmud, “The Influence of Additive Allee Effect and Periodic Harvesting to the Dynamics of Leslie-Gower Predator-Prey Model,” Jambura J. Math., vol. 2, no. 2, pp. 87–96, 2020, doi: 10.34312/jjom.v2i2.4566.
  10. [2020]   H. S. Panigoro and D. Savitri, “Bifurkasi Hopf pada model Lotka-Volterra orde-fraksional dengan efek Allee aditif pada predator,” Jambura J. Biomath., vol. 1, no. 1, pp. 16–24, Jun. 2020, doi: 10.34312/jjbm.v1i1.6908.
  11. [2020]   D. Savitri and H. S. Panigoro, “Bifurkasi Hopf pada model prey-predator-super predator dengan fungsi respon yang berbeda,” Jambura J. Biomath., vol. 1, no. 2, pp. 65–70, Dec. 2020, doi: 10.34312/jjbm.v1i2.8399.
  12. [2020]   H. S. Panigoro and E. Rahmi, “Global stability of a fractional-order logistic growth model with infectious disease,” Jambura J. Biomath., vol. 1, no. 2, pp. 49–56, Dec. 2020, doi: 10.34312/jjbm.v1i2.8135.
  13. [2019]   H. S. Panigoro, A. Suryanto, W. M. Kusumahwinahyu, and I. Darti, “Dynamics of a Fractional-Order Predator-Prey Model with Infectious Diseases in Prey,” Commun. Biomath. Sci., vol. 2, no. 2, p. 105, Dec. 2019, doi: 10.5614/cbms.2019.2.2.4.