Refensi Proposal Penelitian Fundamental 2013

24 March 2013 08:59:25 Dibaca : 1881

DAFTAR PUSTAKA

  • Bishop, C. M. Dan Svensén, M., 2009, Pattern Recognition and Machine Learning, Solution  to the Excercises: Web-Edition. http://research.microsoft.com/ ∼cmbishop/PRML
  • Campbell, J. B., 1996, Introduction to Remote Sensing. London: Francis & Taylor
  • Darlington, R. B., 1997, Multivariate analysis. http://www.psych.cornell.edu/ darlington/manova.htm
  • Djakaria, I., 2012, KPCA pada klasifikasi maximum likelihood.Paper disampaikan pada Konferensi Nasional Matematika VI, 3-6 Juli 2012. Bandung: Jurusan Matematika FMIPA UNPAD
  • Djakaria, I., Guritno, S., Sri H.,2011, Principal component analysis as input processing for the obyect data classification.Paper disampaikan pada The 6th SEAMS-GMU 2011, International Conference on Mathematics and Its Applications, on July 12-15, 2011. Yogyakarta: UGM
  • Djakaria, I., Guritno, S., Sri H., 2010a, Visualisasi data Iris menggunakan analisis komponen utama dan analisis komponen utama kernel. Jurnal Ilmu Dasar (terakreditasi), vol.11, 1, 31-38, Januari 2010.Jember: FMIPA UNEJ.
  • Djakaria, I., Guritno, S., Sri H.,2010b, Ekstraksi fitur menggunakan PCA. Prosiding SNM – 2010. Depok: Dep. Matematika FMIPA UI
  • Dunteman, G.H., 1989, Principal Component Analysis. Newbury Park: Sage Publications
  • Friedman, J., Hastie, T., dan Tibshirani, R., 2008, The Elements of Statistical Learning. Standford, California
  • Izenman, A. J., 2008, Modern Multivariate Statistical Techniques; Regression, Classification, and Maningfold Learning. New York: Springer
  • Jackson, J.E., 1991, A User’s Guide to Principal Component. New York: John Wiley & Sons, Inc
  • Johnson, R. A. Dan Wichern, D. W., 2007, Applied Multivariate Statistical Analysis, 6th edition. New Jersey: Printice Hall
  • Jolliffe, I.T., 2002, Principal Component Analysis, 2ndEdition. New York: Spinger
  • Judge, G. G., Griffiths, W. E., Hill, R. C., Lütkepohl, H., dan Lee, T-C., 1985, The Theory and Practice of Econometrics, 2nd ed. Canada: John Wiley & Sons
  • Pickup, L., Roberts, S., dan Zisserman, A. (dalam Milanfar, P., editor), 2011, Multiframe Super-Resolution from a Bayesian Perspective. Super-Resolution Imaging. New York: Taylor & Francis Group
  • Rawlings, J.O., Pantula, S.G., Dickey, D.A., 1998, Applied Regression Analysis: A Research Tool, 2ndEdition. New York: Springer
  • Raykov, T. Dan Marcoulides, G. A., 2008, An Introduction to Applied Multivariate Analysis. New York: Taylor & Francis Group
  • Rencher, A. C., 2002, Methods of Multivariate Analysis, 2nd ed. Canada: John Wiley & Sons
  • Russell, S. Dan Norvig, P., 2010, Artificial Intelligence (A Modern Approach), 3rd ed. New Jersey: Pearson
  • Sakthi, M., dan Thanamani, A.S., 2011, An effective determination of initial centroids inK-Means clustering using Kernel PCA. International Journal of Computer Science and Information Technologies(IJCSIT), Vol. 2 (3), 2011, 955-959. Pollachi-Tamilnadu: Department of Computer Science, NGM College
  • Schölkopf, B., Smola, A., dan Müller, K-R., 1998, Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10: 1299-1319
  • Schölkopf, B. Dan Smola, A. J., 2002, Learning With Kernels. MIT Press, Cambridge, MA
  • Swain, P. H. Dan Davis, S. M., 1978, Quantitative Approach of Remote Sensing. Washington: McGraw-Hill
  • Theodoridis, S. Dan Koutroumbas, K., 2009, Pattern Recognition. New York: Elsevier
  • Yan, X., Su, X.G., 2009, Linear Regression Analysis, Theory and Computing. New Jersey: World Scientific Publishing Co. Pte. Ltd.