Density of the blue-black urchin Echinotrix diadema (Linnaeus, 1758) in Tomini Bay, Indonesia

25 May 2020 09:52:01 Dibaca : 303

La Nane1*, Alfi Sahri R Baruadi2, Herinda Mardin3

1,2Department of Aquatic Resources Management, Universitas Negeri Gorontalo; 3Department of Biology, Universitas Negeri Gorontalo.*Email Correspondence: lanane@ung.ac.id 

 

Abstract

The blue-black urchin has been widely known and utilized as food in the world, including Indonesia because sea urchin gonad can be consumed. However, the utilization of sea urchins in Gorontalo has not been performed. On the other hand, natural resources information is needed as the database for natural resources management in Tomini Bay. The aim of this study is to document the blue-black urchin Echinotrix diadema. This study conducted at Blue Marlin Beach, South Leato, Gorontalo, from November 2019 to December 2020. Sea urchin density was calculated with a 1 m × 1 m transect quadrate that positioned at interval 5 m in distance along 15 m of the transect line at the coral reef ecosystem. In parallel with the measurement of the density, sea urchin test diameter was measured with a Vernier caliper (0.01 mm accuracy), and the water temperature was measured with a thermometer. The results show that the average of sea urchin density is 3 ind. m–2 in November and December and 1 ind.m–2 in January. That density has no significant difference among the month. Moreover, the average size of the sea urchin test diameter is 60 mm in November, 63 mm in December, and 66 mm in January. The seawater temperature is 34 °C in November, 37 °C in December, and 33 °C in January. That results show that sea urchin density in the blue marlin beach is very low.

Keywords

Density; Echinotrix diadema; Sea Urchin; Test Diameter; Tomini Bay

 

Full Text:

PDF

 

References

Amarowicz, R., Synowiecki, J., & Shahidi, F. (2012). Chemical composition of shells from red (Strongylocentrotus franciscanus) and green (Strongylocentrotus droebachiensis) sea urchin. Food Chemistry, 133(3), 822–826. https://doi.org/10.1016/j.foodchem.2012.01.099

Amri, K., Suwarso, S., & Awwaludin, A. (2017). Hydrological conditions and their relationship with the catch of malalugis (Decapterus macarellus) in the water of Tomini Bay [Indonesian]. Jurnal Penelitian Perikanan Indonesia, 12(3), 183–193. https://doi.org/10.15578/jppi.12.3.2006.183-193

Awwaluddin, A., & Rustam, R. (2017). Demersal fish around the Togean Islands, Tomini Bay [Indonesian]. BAWAL Widya Riset Perikanan Tangkap, 1(4), 145–153. https://doi.org/10.15578/bawal.1.4.2007.145-153

Badrudin, M., Gafa, B., & Naamin, N. (1992). Potential fish resources in the waters of the Maluku Sea and Tomini Bay [Indonesian]. Jurnal Penelitian Perikanan Laut, 65, 19–29.

Baruadi, H., Olii, A. H., & Kadim, M. K. (2017). Density and distribution pattern of sea urchins (Echinoidea) in Lamu Village, Batudaa District, Gorontalo Regency [Indonesian], Retrieved from: http://siat.ung.ac.id/files/wisuda/2016-2-2-54242-633411037-abstraksi-05042017015609.pdf

De la Cruz?García, C., López?Hernández, J., González?Castro, M. J., Rodríguez?Bernaldo De Quirós, A. I., & Simal?Lozano, J. (2000). Protein, amino acid and fatty acid contents in raw and canned sea urchin (Paracentrotus lividus) harvested in Galicia (NW Spain). Journal of the Science of Food and Agriculture, 80(8), 1189–1192. https://doi.org/10.1002/1097-0010(200006)80:83.0.CO;2-7

Djamil, C. (2020). Potential and management strategy of small pelagic resources in Tomini Gulf. Nike: Jurnal Ilmiah Perikanan dan Kelautan, 8(1), 18–24. http://ejurnal.ung.ac.id/index.php/nike/article/view/4715

Dumont, C. P., Himmelman, J. H., & Russell, M. P. (2006). Daily movement of the sea urchin Strongylocentrotus droebachiensis in different subtidal habitats in eastern Canada. Marine Ecology Progress Series, 317, 87–99. https://doi:10.3354/meps317087

Grisolía, J. M., López, F., & Ortúzar, J. de D. (2012). Sea urchin: From plague to market opportunity. Food Quality and Preference, 25(1), 46–56. https://doi.org/10.1016/j.foodqual.2012.01.004

Hereu, B., Zabala, M., Linares, C., & Sala, E. (2005). The effects of predator abundance and habitat structural complexity on survival of juvenile sea urchins. Marine Biology, 146(2), 293–299. https://doi.org/10.1007/s00227-004-1439-y

Jula, I. A., Baruadi, A. S., & Salam, A. (2018). The effectiveness of totabito squid fishing gear in Lamu Village [Indonesian]. Nike: Jurnal Ilmiah Perikanan dan Kelautan, 6(1), 23–28.

Kriegisch, N., Reeves, S., Johnson, C. R., & Ling, S. D. (2016). Phase-shift dynamics of sea Urchin overgrazing on nutrified reefs. PLOS ONE, 11(12), e0168333. https://doi.org/10.1371/journal.pone.0168333

Lauzon-Guay, J.-S., & Scheibling, R. E. (2007). Seasonal variation in movement, aggregation and destructive grazing of the green sea urchin (Strongylocentrotus droebachiensis) in relation to wave action and sea temperature. Marine Biology, 151(6), 2109–2118. https://doi.org/10.1007/s00227-007-0668-2

Mardlijah, S., & Rahmat, E. (2012). Fishing of yellowfin fish juvenile (Thunnus albacares Bonnatere 1788) in the waters of Tomini Bay [Indonesian]. Bawal Widya Riset Perikanan Tangkap, 4(3), 169–176. http://dx.doi.org/10.15578/bawal.4.3.2012.169–176

Medrano, A., Linares, C., Aspillaga, E., Capdevila, P., Montero-Serra, I., Pagès-Escolà, M., & Hereu, B. (2019). No-take marine reserves control the recovery of sea urchin populations after mass mortality events. Marine Environmental Research, 145, 147–154. https://doi.org/10.1016/j.marenvres.2019.02.013

Meyer, E., Green, A. J., Moore, M., & Manahan, D. T. (2007). Food availability and physiological state of sea urchin larvae (Strongylocentrotus purpuratus). Marine Biology, 152(1), 179–191. https://doi.org/10.1007/s00227-007-0672-6

Nane, L. (2019). Sea Urchin Sustainability Studies Based on Dimension Biology, Ecology and Technology at Around of Tolandono Island and Sawa Island at Wakatobi Conservation Area. https://doi.org/10.31230/osf.io/4whz6

Nane, L., & Paramata, A. R. (2020). Impact of Overfishing on Density and Test-Diameter Size of the Sea Urchin Tripneustes gratilla at Wakatobi Archipelago, South Eastern Sulawesi Indonesia. ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 1(1). Retrieved from https://ejournal.undip.ac.id/index.php/ijms/article/view/28074

Natsir, M., Sadhotomo, B., & Wudianto, W. (2017). Estimation of pelagic fish biomass in Tomini Bay waters with the divided acoustic bim method [Indonesian]. Jurnal Penelitian Perikanan Indonesia, 11(6), 101. https://doi.org/10.15578/jppi.11.6.2005.101–107

Obie, M. (2018). Exploitation of coastal and marine resources along Tomini Bay: Livelihood base versus concession rights. Masyarakat, Kebudayaan dan Politik, 31(1), 36. https://doi.org/10.20473/mkp.V31I12018.36-45

Palac??n, C., Giribet, G., Carner, S., Dantart, L., & Turon, X. (1998). Low densities of sea urchins influence the structure of algal assemblages in the western Mediterranean. Journal of Sea Research, 39(3–4), 281–290. https://doi.org/10.1016/S1385-1101(97)00061-0

Reynolds, J. A., & Wilen, J. E. (2000). The Sea Urchin Fishery: Harvesting, Processing and the Market. Marine Resource Economics, 15(2), 115–126. https://doi.org/10.1086/mre.15.2.42629295

Rocha, F., Rocha, A. C., Baião, L. F., Gadelha, J., Camacho, C., Carvalho, M. L., Arenas, F., Oliveira, A., Maia, M. R. G., Cabrita, A. R., Pintado, M., Nunes, M. L., Almeida, C. M. R., & Valente, L. M. P. (2019). Seasonal effect in nutritional quality and safety of the wild sea urchin Paracentrotus lividus harvested in the European Atlantic shores. Food Chemistry, 282, 84–94. https://doi.org/10.1016/j.foodchem.2018.12.097

Rodriguez, V., Bartolomé, B., Armisén, M., & Vidal, C. (2007). Food allergy to Paracentrotus lividus (sea urchin roe). Annals of Allergy, Asthma & Immunology, 98(4), 393–396. https://doi.org/10.1016/S1081-1206(10)60888-5

Sala, E., & Zabala, M. (1996). Fish predation and the structure of the sea urchin Paracentrotus lividus populations in the NW Mediterranean. Marine Ecology Progress Series, 140, 71–81. https://doi.org/10.3354/meps140071

Sulaeman, M., Yobert, K., & Darman, D. (2018). Analysis of fish supply chains in Tomini Baya area, Indonesia. Russian Journal of Agricultural and Socio-Economic Sciences, 82(10), 268–271. https://doi.org/10.18551/rjoas.2018-10.31

Suriani, S., Latumahina, B. M., Hitalessy, R. B., & Eddy, L. (2020). Relationship of macroalgae (Padina sp) population with pigskin (Tripneustes gratilla) in coastal waters of Desa Titawaai, Central Maluku Regency [Indonesian]. Jurnal Riset Perikanan dan Kelautan, 2(1), 165–175. http://ejournal.um-sorong.ac.id/index.php/jrpk/article/view/866

Suwarso, S., A. Zamrony, A. Z., & Setiawan, R. (2017). The eating habit of several types of pelagic fish in the waters of Tomini Bay [Indonesian]. Jurnal Penelitian Perikanan Indonesia, 11(6), 103. https://doi.org/10.15578/jppi.11.6.2005.103-113

Takagi, S., Murata, Y., Inomata, E., Aoki, M. N., & Agatsuma, Y. (2019). Production of high quality gonads in the sea urchin Mesocentrotus nudus (A. Agassiz, 1864) from a barren by feeding on the kelp Saccharina japonica at the late sporophyte stage. Journal of Applied Phycology, 31(6), 4037–4048. https://doi.org/10.1007/s10811-019-01895-6

Tomas, F., Martínez-Crego, B., Hernán, G., & Santos, R. (2015). Responses of seagrass to anthropogenic and natural disturbances do not equally translate to its consumers. Global Change Biology, 21(11), 4021–4030. https://doi.org/10.1111/gcb.13024