Atikel ini membahas konsep pengurangan risiko bencana berbasis masyarakat sehingga dapat mewujudkan ketahanan masyarakat terhadap bencana. Pelaksanaan program ketahanan bencana berbasis komunitas menggunakan pendekatan partisipatif, observasi, wawancara, sosialisasi, pelatihan, dan Forum Group Discussion (FGD). Pembentukan forum PRB dan TSBM mendapat respon positif dari masyarakat disebabkan Desa Pilomonu digolongkan sebagai desa rawan bencana khususnya tanah longsor dan banjir. Analisis indeks ketangguhan yang dilakukan oleh forum berdasarkan indikator dan capaian, diperoleh bahwa Desa Pilomonu termasuk dalam kategori ‘desa belum tangguh’ dan tingkat kesiapsiagaan yang rendah. indikator ketahanan bencana masyarakat yang telah ditetapkan dan diruaikan dalam dokumen, dapat mejadi fokus utama seluruh pihak yang terkait dengan penanggulangan risiko bencana. Forum PRB dan TSBM sebagai pihak yang memiliki akses secara menyeluruh dalam meningkatkan ketahanan bencana, sebab keterampilan forum dalam melibatkan pemangku kepentingan menjadi penentu suksesnya ketahanan bencana sampai ke masyarakat tingkat bawah. Integrasi antara program pemerintah Desa Pilomonu dan forum pengurangan risiko bencana dapat menjamin keberlanjutan kinerja forum. 

Selengkapnya >>>

Dampak yang ditimbulkan oleh perubahan iklim dapat mempengaruhi aktivitas kehidupan manusia dan ekosistem lainnya. Tujuan dari kegiatan ini adalah: (1) membentuk komunitas masyarakat atau forum adaptasi masyarakat, (2) melakukan sosialisasi dan pelatihan peningkatan kapasitas pengetahuan dan keterampilan forum, (3) memfasilitasi penyusunan rencana aksi adaptasi untuk menghadapi dampak perubahan iklim. Program ini mengunakan beberapa pendekatan, yaitu: partisipatif, wawancara, observasi, Focus Group Discussion (FGD), survey lapangan, sosialisasi dan pelatihan. Pembentukan komunitas masyarakat dalam rangka penguatan kapasitas kelembagaan merupakan bagian dari upaya adaptasi dalam menghadapi dampak perubahan iklim. Hasil observasi dan identifikasi oleh Forum Adaptasi Masyarakat (ForSIKAT), diketahui bahwa Hutan Mangrove merupakan jenis penggunaan/penutupan lahan yang dominan. Pengetahuan dan keterampilan adalah unsur penting dalam melakukan adaptasi. Rencana aksi adaptasi untuk menghadapi dampak perubahan iklim yang telah dilaksanakan adalah, melakukan identifikasi batas wilayah desa dan dusun, memetakan potensi sumber daya lahan di desa, dan membuat rambu peringatan dini pada lokasi yang telah ditentukan.

Selengkapnya >>>

KKS DESTANA (DESA TANGGUH BENCANA)

29 June 2018 07:27:08 Dibaca : 332

KKS DESTANA dengan tema “Pemberdayaan Masyarakat Dalam Pemanfaatan Informasi Iklim Untuk Pengendalian Banjir Dan Kekeringan” dilaksanakan pada tanggal 12 April sampai 27 Mei Tahun 2018 di Desa Bandung Rejo, Potanga dan Pilomonu Kabupaten Gorontalo. Kegiatan ini melibatkan 30 orang mahasiswa dari berbagai program studi yang ada Universitas Negeri Gorontalo, kegiatan ini di bimbing oleh Syahrizal Koem, S.Pd, M.Si sebagai ketua dan Noviar Akse, ST, M.Sc. KKS DESTANA merupakan program KKS yang spesifik pada pemberdayaan masyarakat dalam mewujudkan desa tangguh bencana. Selain itu, KKS DESTANA memilik relevansi dengan pembangunan daerah pasca bencana, relevan dengan kebutuhan masyarakat serta relevan dengan mengubah cara pandang, pola pikir dan berkepribadian yang semuanya dapat teraktualisasi pada nilai-nilai Integritas, etos kerja, dan sifat gotong ronyong dalam menghadapi bencana alam. Hal tersebut dapat mewujudkan capaian hasil yaitu meningkatnya keberdayaan masyarakat secara terukur (meningkatnaya kapasitas penanggulangan bencana, penurunan emisi CO2, peningkatan Indeks Pembangunan Manusia (IPM), penurunan angka kerugian ekonomi akibat bencana alam dan lain-lain).

Beberapa program utama yang dilaksanakan selama kegiatan ini berlangsung yaitu: (1) Pembentukan Forum Penanggulangan Risiko Bencana, (2) Pembentukan Tim Siaga Bencana Masyarakat, (3) Sosialisasi dan pelatihan rencana penanggulangan bencana, rencana aksi komunitas, rencana kontigensi, (4) Membuat peta dan analisis risiko bencana, (5) Membuat rambu-rambu peringatan bencana. Selain itu, beberpa program tambahan diantaranya: Penanaman pohon, sanitasi lingkungan dan pembuatan lubang biopori. Luaran dari Kegiatan KKS DESTANA berupa dokumen Desa Tangguh Bencana (DESTANA) yang dapat dijadikan sebagai salah satu dasar dalam pengambilang keputusan pembagunan di desa.

Prediksi Curah Hujan Menggunakan Metode Logika Fuzzy

22 April 2018 18:48:16 Dibaca : 1319

PENDAHULUAN

Unsur iklim yang sering dan menarik untuk dikaji di Indonesia adalah curah hujan, karena tidak semua wilayah Indonesia mempunyai pola hujan yang sama. Diantaranya ada yang mempunyai pola munsonal, ekuatorial dan lokal. Pola hujan tersebut dapat diuraikan berdasarkan pola masing-masing. Distribusi hujan bulanan dengan pola monsun adalah adanya satu kali hujan minimum.

Perubahan frekuensi curah hujan oleh komponen termodinamika dan dinamis. Komponen termodinamika diinduksi oleh perubahan uap air di atmosfer, sedangkan komponen dinamis dikaitkan dengan perubahan gerak vertikal. Dalam kontribusi termodinamika, peningkatan uap air mengurangi besarnya gerak vertikal yang diperlukan untuk menghasilkan kekuatan yang relatif sama dengan curah hujan, sehingga frekuensi curah hujan meningkat. Peningkatan uap air juga mengintensifkan curah hujan akibat peningkatan ketersediaan uap air di atmosfer. Dalam kontribusi dinamis, kondisi lebih stabil dan cenderung mengurangi frekuensi dan intensitas curah hujan Chou et al (2012).

Kecenderungan pola curah hujan yang fluktuatif, kadang membuat aktivitas kita terganggu sebagai akibat dari kurang tepat dalam memprediksi apakah pada saat ini akan terjadi hujan atau tidak. Dalam dinamika ilmi pengetahuan saat ini, para saintis telah banyak menemukan model untuk memprediksi cuaca. Memprediksi curah hujan akan digunanakan Teori logika fuzzy dikatakan sebagai logika baru yang lama, sebab ilmu tentang logika fuzzy modern dan metodis baru ditemukan beberapa tahun yang lalu, padahal sebenarnya konsep tentang logika fuzzy itu sendiri sudah ada pada diri kita sejak lama.

METODOLOGI

Perancangan FIS (Fuzzy Inference System)

Perancangan FIS (Fuzzy Inference System) menggunakan fitur fuzzy logic toolbox MATLab 2008. Perancangan FIS untuk cuaca di gunakan variable input yaitu suhu (T) dan variabel output cuaca (Gambar 1).

Gambar 1. Fungsi keanggotaan variabel input dan output

Untuk variabel input suhu dibagi dalam 3 fungsi keanggotaan yaitu rendah (Lo), sedang (Mod), dan tinggi (Hi) dengan rentang (range) 20 sampai 24. Fungsi keanggotaan variabel input suhu rendah (Lo) dengan rentang (range) 20 sampai 26, sedang (Mod) dengan rentang (range) 26 sampai 31, dan tinggi (Hi) dengan rentang (range) 31 sampai 34 (Gambar 2).

Gambar 2. Fungsi keanggotaan variabel input suhu

Variabel kelembaban (RH) dibagi dalam tiga fungsi keanggotaan yaitu rendah (Lo), sedang (Mod), dan tinggi (Hi) dengan rentang (range) 50 sampai 99. Fungsi keanggotaan variabel input Kelembaban rendah (Lo) dengan rentang (range) 50 sampai 70, sedang (Mod) dengan rentang (range) 70 sampai 80, dan tinggi (Hi) dengan rentang (range) 80 sampai 99 (Gambar 3).

Gambar 3. Fungsi keanggotaan variabel input kelembaban

Variabel input kecepatan angin (V) dibagi dalam tiga fungsi keanggotaan yaitu rendah (Lo), sedang (Mod), dan tinggi (Hi) dengan rentang (range) 1 sampai 70. Fungsi keanggotaan variabel input kecepatan angin rendah (Lo) dengan rentang (range) 1 sampai 10, sedang (Mod) dengan rentang (range) 10 sampai 20, dan tinggi (Hi) dengan rentang (range) 20 sampai 70 (Gambar 4).

Gambar 4. Fungsi keanggotaan variabel input kecepatan

Variabel output cuaca dibagi dalam 4 fungsi keanggotaan yaitu cerah berawan (CRB) dengan range 0 sampai 5, hujan ringan (HR) dengan range 5 sampai 20, hujan sedang (HS) dengan range 20 sampai 50, dan hujan lebat (HL) dengan range 50 sampai 100 (Gambar 5). Penentuan range ini didasrakan pada tetapan dari BMKG 2012.

 

 Gambar 5. Fungsi Keanggotaan Variabel Output (cuaca)

Perancangan Rule

Perancangan rule didasarkan pada keterangan pakar tentang hubungan antara suhu, kelembaban, dan kecepatan angin sehingga terjadi kondisi cuaca yang berbeda-beda (cerah berawan, hujan ringan, hujan sedang, dan hujan lebat). Berikut ini adalah rule yang telah di rancang:

  1. Jika suhu (Lo), Kelembaban (Lo), Kecepatan angin (Lo), maka cuaca adalah (CRB).
  2. Jika suhu (Lo), Kelembaban (Hi), Kecepatan angin (Hi), maka cuaca adalah (HL).
  3. Jika suhu (Lo), Kelembaban (Mod), Kecepatan angin (Hi), maka cuaca adalah (HS).
  4. Jika suhu (Lo), Kelembaban (Mod, Kecepatan angin (Mod), maka cuaca adalah (HR).
  5. Jika suhu (Hi), Kelembaban (Mod), Kecepatan angin (Lo), maka cuaca adalah (CRB).
  6. Jika suhu (Hi), Kelembaban (Lo), Kecepatan angin (Mod), maka cuaca adalah (CRB).
  7. Jika suhu (Mod), Kelembaban (Hi), Kecepatan angin (Hi), maka cuaca adalah (HS).
  8. Jika suhu (Mod), Kelembaban (Mod), Kecepatan angin (Mod), maka cuaca adalah (HR).
  9. Jika suhu (Mod), Kelembaban (Hi), Kecepatan angin (Hi), maka cuaca adalah (HS).
  10. Jika suhu (Lo), Kelembaban (Mod), Kecepatan angin (Hi), maka cuaca adalah (HL).

Validasi dan Analisa FIS (Fuzzy Inference System)

Proses validasi FIS dilakukan dengan mengambil data cuaca berdasarkan prediksi BMKG pada tanggal 21 Juni 2012 dari sebelas kota di Indonesia yaitu Banda Aceh, Semarang, Pekanbaru, Bandung, Palembang, Lampung, Palu, Kendari, Ternate, Jayapura, dan Manokwari. Sementara untuk data kecepatan angin, suhu, dan kelembaban diperoleh dari websate Automatic Weather Station BMG (http://aws-online.bmg.go.id/bmg/aws/index.php) waktunya disesuaikan dengan data suhu, kelembaban dan keterangan cuaca yang diperoleh. Data cuaca disajikan pada Tabel 1.

Validasi dan analisis dilakukan dengan cara menginput data observasi yang di peroleh dari BMKG ke dalam sistem perangkat Fuzzy yang telah di rancang. Kemudian nilai output cuaca yang dihasilkan dari sistem perangkat Fuzzy disesuikan dengan rentang atau range cuaca (cerah berawan, hujan ringan, hujan sedang, dan hujan lebat) yang telah di tetapkan oleh BMKG.

HASIL DAN PEMBAHASAN

Setelah dilakukan running terhadap hasil observasi dari suhu, kelembaban, dan kecepatan angin, maka didaptkan hasil simulasi dari masing-masing variabel seperti pada Tabel 2 berikut:

Agar lebih mempermudah dan memperjelas dalam memvalidasi antara hasil observasi dan simulasi maka hasil observasi di buat dalam bentuk skoring dengan mengacu pada skala likert, dimana skala pengukuran ini merupakan kesepakatan yang digunakan sebagai acuan untuk menentukan panjang pendeknya interval. Dengan menggunakan skala likert variable yang akan diukur dijabarkan menjadi indikator variabel, kemudian indikator teresebut dijadikan sebagai titik tolak. Skoring untuk variabel tersebut seperti pada Tabel 3.

Dengan mengacu pada hasil skoring tabel di atas maka validasi antara kesesuaian hasil observasi dan hasil simulasi dapat dilihat pada Gambar 6 di bawah ini.

Gambar 6. Validasi Hasil Observasi dan Simulasi

Gambar 6 di atas menunjukan bahwa ketidaksesuaian antara hasil observasi dan hasil simulasi dengan koefisien korelasi sebesar 0.024. Artinya penyusunan perancangan FIS (Fuzzy Inference System) yang telah dilakukan dapat dikatakan belum akurat sehingga tidak dapat digunakan dalam melakukan prediksi curah hujan untuk seluruh wilayah di Indonesia.

KESIMPULAN

Dari hasil dan pembahasan dapat disimpulkan bahwa:

  1. Perancangan FIS (Fuzzy Inference System) untuk prediksi cuaca di berbagai wilayah di Indonesia belum memilki kesesuaian antara observasi dan simulasi.
  2. Dalam Perancangan FIS (Fuzzy Inference System) perlu dipahami aturan dalam penentuan range ketika akan melakukan input variabel.
  3. Kemungkinan kesalahan dalam perancangan FIS (Fuzzy Inference System) dalam kasus ini adalah kurang tepat dalam menentukan range setiap variabel ketika akan melakukan input dan penentuan rule yang digunakan. Karena keterbatasan pakar dan referensi yang mendukung kajian ini.

SARAN

Perlu dilakukan pengkajian untuk seluruh wilayah di Indonesia dengan variabel input seluruh unsur cuaca.

REFERENSI

Asmoro I.B. 2011. Perancangan Perangkat Lunak Prediktor Cuaca Berbasis Logika Fuzzy. [skripsi]. Surabaya. Istitut Teknologi Surabaya

[BMKG]. 2012. Prospek Cuaca Satu Minggu Kedepan

http://www.bmkg.go.id/BMKG_Pusat/Meteorologi/Prospek_Cuaca_Mingguan.bmkg\

Chou C, Chen CA, Ting Chen K, Tan PH. 2012. Mechanisms for Global Warming Impacts on Precipitation Frequency and Intensity. Jouranal Of Climate 25: 3291-3306.

Syukur A.R. 2007. Cuaca dan Iklim. http://mbojo.wordpress.com/2007/04/15/cuaca-dan-iklim/

[AWS BMG]. 2012. Badan Meteorologi dan Geofisika. http://aws-online.bmg.go.id/bmg/aws/index.php

PENDAHULUAN

SWAT adalah model komprehensif yang memerlukan keragaman informasi dalam menjalankan. Pengguna pemula mungkin merasa sedikit kewalahan oleh keragaman dan jumlah input ketika pertama kali mulai menggunakan model. Namun, ada beberapa dari input yang digunakan untuk mensimulasikan khusus untuk beberapa daerah aliran sungai (DAS) dan tidak digunakan pada daerah aliran sungai (DAS) yang lain Neitsch et al (2002). Sehingga model SWAT dapat dikatakan sebagai model konseptual, hal ini sesuai pendapat yang diungkapkan oleh Ibbitt dan O’Donnel (t.t) bahwa masalah utama yang terkait dengan penggunaan model konseptual yang di bangun hanya cocok untuk suatu DAS tertentu, model konseptual bertolak balakang dengan model matematika, dimana model matematika dapat mensimulasikan respon dari catchment hingga curah hujan dan kejadian meteorologi lainnya memiliki beberapa tingkat realisme fisik Manley (t.t), hal ini berlaku untuk model yang mencakup satu atau lebih dari daerah aliran sungai (DAS).

Model SWAT mensimulasikan suluruh daerah aliran sungai (DAS) tidak menjadi masalah, karena model ini mrupakan model komperhensif sehingga memuat fitur-fitur khusus untuk daerah aliran sungai (DAS) dimanapun, tergantung pengguna yang menggunakan model ini dapat menyesuaikan dengan karakter daerah aliran sungai (DAS) yang akan disimulsikan. Menurut Arnold et al (1998) diacu dalam Setegn (2010) bahwa model SWAT digunakan untuk skala daerah aliran sungai (DAS) secara terus menurus dan jangka panjang, model ini dirancang untuk memprediksi dampak dari pengolahan lahan terhadap respon hidrologi, sedimentasi dalam suatu daerah aliran sungai (DAS), dan pencemaran pada daerah aliran sungai (DAS) dari aktifitas pertanian.

METODOLOGI KAJIAN

Kajian pustaka dilakukan untuk menelusuri perkembangan model SWAT yang digunakan dalam simulasi hidrologi daerah aliran sungai (DAS) yang sesuai dengan kondisi dan permasalahan di daerah aliran sungai (DAS) tersebut, sehingga dapat menarik kesimpulan tentang model SWAT dari berbagai kondisi daerah aliran sungai (DAS) yang dikaji.

PEMBAHASAN

Setegn et al., (2010) melakukan penelitian dengan menguji model SWAT untuk memprediksi sedimen di DAS Anjenigauged, Ethiopia. Masalah yang ada di di sekitar das tersebut adalah erosi tanah dan degradasi lahan yang berasal dari dataran tinggi Ethiopia. Hasil yang diperoleh Setegn et al (2010) bahwa kinerja model SWAT untuk memprediksi hasil sedimen rata-rata tahunan adalah 24,6 ton/ha. Sedangkan hasil simulasi sedimen rata-rata tahunan di peroleh 27.8 dan 29.5 ton/ha. Penelitan Setegn et al (2010) menujukan bahwa kesesuaian antara nilai yang diamati dengan hasil sedimen yang disimulasi dengan Nash-Sutcliffe efisiensi (NSE)= 0.81, persen bias (PBIAS) = 28%, RMSE-pengamatan rasio standar deviasi (RSR) = 0.23, dan koefisien determinasi (R2) = 0.86 untuk kalibrasi nilai yang diperoleh NSE = 0.79, PBIAS = 30%, RSR = 0.29, dan R2 = 0.84 .

Gambar 1. Perbandingan Antara Stremflow Bulanan pengukuran dan Simulasi Kalibrasi (atas) dan Periode Validasi (bawah) Setegn et al., (2010).

Gambar 2. Perbandingan Antara hasil sedimentasi Bulanan pengukuran dan Simulasi Kalibrasi (atas) dan Periode Validasi (bawah) Setegn et al., (2010)

Secara umum hasil simulasi menunjukkan pola tahunan yang sesuai dengan data observasi. Debit puncak aliran pada data observasi dan simulasi baik kalibrasi dan validasi terjadi pada bulan ke 20 mencapai 0.12 m3/ha, hal ini mengindikasikan bahwa pada bulan tersebut merupakan puncak curah hujan sehingga berakibat pada menigkatnya debit aliran di DAS Anjenigauged, Ethiopia. Peningkatan debit ini akan disertai dengan meningkatnya hasil sedimentasi pada DAS Anjenigauged, Ethiopia. Terlihat pada gambar 2 bahwa puncak sedimentasi terjadi pada bulan ke 20 yang mencapai sekitar 33 ton/ha untuk kalibarasi dan untuk periode validasi mencapai 20 ton/ha.

Secara keseluruhan model SWAT yang digunakan dalam mensimulasikan hasil sedimentasi di DAS Anjenigauged, Ethiopia dapat dikatakan baik artinya model SWAT dapat meniru kejadian sebernarnya, hal ini juga di dukung oleh nilai NSE sebesar 0.81, maka model SWAT untuk DAS Anjenigauged, Ethiopia dapat dikatakan baik. Penelitian Setegn et al (2010) menujukan bahwa yang mempengaruhi hasil sedimentasi tidak hanya disebabkan oleh curah hujan yang berpengaruh pada peningkatan debit aliran di DAS Anjenigauged, Ethiopia, tetapi juga dipengaruhi oleh hasil sedimentasi sensitif terhadap kemiringan saluran, panjang lereng dan kerapatan drainase.

Sementara itu penelitian yang dilakukan oleh Abbaspour et al (2007) menggunakan model SWAT untuk mensimulasi proses yang tekait dengan kualitas air, sedimen, dan hara yang berada di daerah tangkapan. Untuk mengkalibrasi model SWAT Abbaspour et al (2007) menggunakan dua langkah untuk menilai keakuratan dari kalibrasi: (1) persentase ketidakpastian prediksi 95% dihitung dengan persentil 2.5 dan 97.5 dari distribusi komulatif variabel simulasi. (2) faktor yang merupakan rasio dari jarak rata-rata antara persentil dan standar deviasi dari variabel yang diukur menunjukan kesesuaian. Hal ini menggambarkan bahwa penyelesaian secara statistik sangat baik untuk debit dan nitrat dan hasil cukup baik untuk sedimen dan fospor. Berdasarkan hasil yang diperoleh bahwa model SWAT dinilai menjadi model yang pantas digunakan untuk menilai kualitas air dan jumlah air di suatu DAS. Hal ini dapat dilihat pada gambar 4 di bawah.

Gambar 4 Simulasi dan observasi sedimen dua mingguan di outlet DAS. Kalibrasi sedimen (1991-1995) atas, dan validasi sedimen (1996-2000) bawah. Abbaspour et al., (2007).

Gambar 4 di atas memberikan informasi bahawa hasil simulasi dan observasi sedimen setelah validasi memberikan nilai persentasi yang bagus yaitu 85 % artinya adalah model SWAT yang digunakan menunjukan keakuratan dalam mensimulasikan sedimen dan mnghasilkan nilai d-faktor 0.73 artinya pada saat di validasi rasio dari jarak rata-rata antara persentil dan standar deviasi dari sedimen yang diukur sudah sesuai baik observasi maupun simulasi, maka dapat dikatakan model SWAT dapat meniru kondisi sesungguhnya dari variabel sedimen yanf diukur.

Gambar 5 Simulasi dan observasi dua mingguan total fosfor yang dibawa oleh sungai di outlet DAS. Kalibrasi total fosfor (1991-1995) atas, dan validasi fosfor total (1996-2000) bawah. Abbaspour et al., (2007)

Gambar 5 di atas menunjukan bahwa variabel fosfor yang diukur setelah di validasi menunjukan nili d-faktor lebih kecil dari pada nilai kalibrasi, sedangkan untuk data pengukuran oleh 95PPU mengalami penurunan sebesar 6%. Tetapi pada simulasi fosfor yang terdapat pada DAS bisa dikatakan baik.

Gambar 6 Simulasi dan observasi dua mingguan total nitrat yang dibawa oleh sungai di outlet DAS. Kalibrasi total nitrat (1991-1995) atas, dan validasi nitrat total (1996-2000) bawah. Abbaspour et al. (2007)

Sedangkan pada gambar 6 di atas menunjukan nilai data pengukuran oleh 95PPU mengalami kenaikan dari kalibrasi sebesar 82% menjadi 84% pada saat di validasi artinya simulasi kandungan nitrat di DAS memberikan hasil yang baik. Secara keseluruhan penggunaaan model SWAT dalam mensimulasikan kondisi DAS untuk melihat kualias air, menunjukan ada hubungan antara jumlah sedimentasi dengan jumlah kandungan fosfor dan nitrat di DAS. Semakin tinggi sedimentasi maka jumlah kandungan fosfor dan nitrat juga semakin tinggi, karena peningkatan jumlah sedimentasi disebabkan tingginya jumlah debit air yang membawa fosfor dan nitrat yang terdapat didalam tanah.

KESIMPULAN

Berdasrakan hasil pembahasan dan studi literatur dapat disimpulkan bahwa, penggunaan model SWAT dalam mensimulasi sedimentasi dan kualitas air memberikan hasil yang baik pada dua karakter DAS yang berbeda. Sehingga hasil ini dapat membantah terori yang di ungkapakan oleh Ibbitt dan O’Donnel (t.t) bahwa masalah utama yang terkait dengan penggunaan model konseptual yang di bangun hanya cocok untuk suatu DAS tertentu. Karena model SWAT merupakan model konseptual maka pendapat dari Ibbitt dan O’Donnel (t.t) tidak berlaku untuk model SWAT . Fitur-fitur dari model SWAT sangat komperhensif maka dapat digunakan pada kondisi DAS dimanapun.

REFERENSI

Abbaspour KC et al. 2007. Modelling Hydrology and Water Quality In The Pre-Alpine/Alpine Thur Watershed Using SWAT. Journal of Hydrology. 333: 413– 430.

Ibbitt RP, O’Donnel T. tanpa tahun. Designing Conceptual Catchment Models For Automatic Fitting Methods: hlm 461-475.

Manley RE. tanpa tahun. A Hydrological Model With Physically Realistic Parameters: hlm 154-161.

Neitsch SL, Arnold JG, Kiniry JR, Srinivasan R, Williams JR. 2002. Soil and Water Assessment Tool User’s Manual Version 2000. Texas Water Resources Institute. College Station: Texas.

Setegn SG, Dargahi B, Srinivasan R, Melesse AM. 2010. Modeling Of Sediment Yield From Anjeni-Gauged Watershed, Ethiopia Using SWAT Model. Journal Of The American Water Resources Association. Vol 46. No 3: 514-526.