Model SIR untuk Penyebaran Penyakit - Model Persamaan Diferensial

Posted on 17/06/2018 by Resmawan

Author(s): David Smith and Lang Moore                                                               Kembali

Sebagai langkah pertama dalam proses pemodelan, kita mengidentifikasi variabel independen dan dependen. Variabel independen adalah waktu t, yang diukur dalam beberapa hari. Kita pertimbangkan dua kelompok variabel dependen yang berkaitan. 

Kelompok variabel dependen pertama mewakili setiap kelompok populasi manusia, masing-masing dalam fungsi waktu yaitu:

S = S(t) mewakili proporsi individu rentan,
I = I(t) mewakili proporsi individu terinfeksi dan
R = R(t) mewakili proporsi individu yang pulih dari penyakit.

Kelompok variabel dependen selanjutnya mewakili hasil perbandingan dari masing-masing kategori populaasi dengan total populasi. Dengan demikian, jika N adalah total populasi (Misal: 7.900.000), maka  diperoleh

s(t) = S(t)/N mewakili banyaknya individu rentan,
i(t) = I(t)/N mewakili banyaknya individu terinfeksi dan
r(t) = R(t)/N mewakili banyaknya individu yang pulih dari penyakit.

Mungkin akan terlihat lebih alami untuk bekerja dengan jumlah populasi, namun beberapa perhitungan akan lebih sederhana jika digunakan nilai proporsi sebagai gantinya. Dua kelompok variabel dependen diatas saling proporsional satu sama lain, sehingga salah satu akan kita gunakan untuk memperoleh informasi terkait perkembangan penyakit.

Selanjutnya kita buat beberapa asumsi terkait tingkat perubahan variabel antara lain:

  1. Tidak ada penambahan pada ke kelompok rentan, karena kita mengabaikan kelahiran dan imigrasi. Satu-satunya cara individu meninggalkan kelompok rentan adalah dengan berpindah ke kelompok terinfeksi.
  2. Kita berasumsi bahwa laju perubahan S(t), tergantung pada jumlah individu rentan, jumlah individu terinfeksi, dan jumlah kontak antara individu rentan dengan individu terinfeksi.
  3. Lebih kuhusus, kita berasumsi bahwa setiap individu yang terinfeksi memiliki jumlah kontak tetap b, per hari yang cukup untuk menyebarkan penyakit. Tidak semua kontak terjadi dengan individu rentan.
  4. Jika kita berasumsi bahwa populasi bercampur secara homogen, maka proporsi kontak dengan individu rentan adalah s(t). Dengan demikian, rata-rata setiap individu yang terinfeksi menghasilkan b*s(t) individu terinfeksi baru per hari. [Dengan populasi rentan yang besar dan populasi terinfeksi yang relatif kecil, kita dapat mengabaikan situasi penghitungan yang rumit seperti individu rentan bertemu lebih dari satu individu terinfeksi pada hari tertentu].
  5. Kita juga berasumsi bahwa ada proporsi tetap k dari kelompok individu terinfeksi yang akan pulih setiap hari tertentu. Misalnya, jika durasi rata-rata infeksi adalah tiga hari, maka rata-rata sepertiga dari populasi yang terinfeksi saat ini akan pulih pulih setiap harinya. (Untuk lebih jelasnya, yang kita maksud dengan "individu terinfeksi" adalah individu yang benar-benar "menular," yaitu individu yang mampu menyebarkan penyakit ke individu rentan. Individu yang telah "pulih" masih mungkin merasakan gejala penyakit, dan bahkan bisajadi meninggal dunia kemudian akibat pneumonia).

Berdasarkan asumsi-asumsi ini, kita lihat apa yang dapat diketahui tentang turunan dari variabel dependen kita. 

Perhatikan dan ikuti langkah-langkah berikut ini. Anda dipersilahkan untuk menjawab beberapa pertanyaan yang diberikan:

1. Berdasarkan asumsi yang telah dibuat, bagaimana menurut Anda prilaku s(t), i(t) dan r(t) terhadap waktu?

2. Buat sketsa grafik fungsi tersebut masing-masing pada selembar kertas berdasarkan pemahaman anda.

3. Jelaskan mengapa, pada setiap waktu t, s (t) + i (t) + r (t) = 1.

4. Persamaan untuk Individu Rentan

Jelaskan dengan seksama setiap komponen dari persamaan diferensial berikut:

mengikuti penjelasan yang telah diberikan sebelumnya. Khususnya:

  • Mengapa terdapat faktor I(t) pada persamaan?
  • Dari mana asal tanda negatif pada persamaan tersebut?

Selanjutnya jelaskan bagaimana persamaan ini dikonversi ke persamaan diferensial berikut untuk s(t).

5. Persamaan untuk Individu yang telah Pulih

Jelaskan bagaimana menemukan persamaan diferensial untuk r(t), 

 mengikuti dari Langkah yang telah dilakukan pada nomor 4.

 

 6. Persamaan untuk Individu Terinfeksi

Jelaskan kenapa diperoleh

Asumsi apa yang mencerminkan model ini?

Selanjutnya, jelaskan dengan seksama bagaimana komponen dari persamaan

mengikuti langkah-langkah yang telah Anda lakukan sejauh ini. Khususnya,

  • Mengapa terdapat dua suku pada persamaan?
  • Mengapa laju perpindahan individu dari populasi terinfeksi ke populasi pulih harus bergantung hanya pada i(t)?
  • Dari mana tanda asal minus pada persamaan?

Akhirnya, kita dapat menyelesaikan model ini dengan memberikan nilai awal pada masing-masing persamaan diferensial. Untuk virus ini "flu Hong Kong di New York City pada akhir tahun 1960", hampir tidak ada yang kebal pada awal-awal peyebaran penyakit, sehingga hampir semua orang rentan terhadap penyakit. Kita asumsikan bahwa ada tingkat infeksi dalam populasi, katakanlah, 10 orang. Dengan demikian, nilai awal kita yang berikan untuk variabel populasi adalah

S(0) = 7,900,000

I(0) = 10

R(0) = 0

Dalam bentuk variabel berskala, kondisi awal ini sama dengan

s(0) = 1
i(0) = 1.27 x 10- 6
r(0) = 0

(Catatan: Jumlah populasi awal kita tidak sepenuhnya tepat N, demikian juga dengan nilai proporsinya tidak sepenuhnya tepat tepat 1. Namun Tingkat infeksi yang sangat kecil sehingga hal ini tidak akan berpengaruh pada hasil).

Model lengkap yang diperoleh adalah

Kita belum mengetahui nilai untuk parameter b dan k, namun kita dapat memberi nilai estimasi sesuai kebutuhan agar sesuai dengan data kematian. Kita sudah memperkirakan rata-rata masa penularan dalam jangka waktu tiga hari, sehingga digunakan k = 1/3. Jika diperkirakan bahwa setiap terinfeksi akan membuat kontak yang mungkin menginfeksi setiap dua hari, maka b dapat diamusikan 1/2. Kita tegaskan kembali bahwa ini nilai hanyalah prediksi. Plot berikut menunjukkan kurva solusi untuk nilai b dan k tersebut.

 

7. Bandingkan jawaban anda pada langkah 1 dan 2 dengan plot di atas. Bagaimana ide-ide itu dibandingkan dengan gambar di atas? 

  • Bagaimana pendapat Anda tentang tingkat infeksi yang relatif rendah pada puncak epidemi?
  • Dapatkah menjelaskan bagaimana tingkat infeksi yang rendah dapat menyebabkan lebih dari separuh penduduk jatuh sakit? 

Pada Bagian selanjutnya, kita akan melihat bagaimana kurva solusi dapat dihitung bahkan tanpa rumus untuk fungsi solusi.

Link Artikel

Posted in Informasi Kuliah
Leave a Reply


Name


Website


Comment


Chapta
znexjp