Model SIR untuk Penyebaran Penyakit - Ringkasan
02 July 2018 07:24:28
Dibaca : 1109
Kategori : Pemodelan Matematika
Author(s): David Smith and Lang Moore Kembali
- Explain briefly the modeling steps that lead to the SIR model.
- Given a population and disease combination for which the SIR model is appropriate, what are the possible outcomes when a trace of infection is introduced into the population? How can you tell whether there will be an epidemic?
- Does "epidemic" mean that almost everyone will get the disease? If so, what keeps the spread of disease going? If not, what causes the epidemic to end before everyone gets sick?
- How can it happen that a large percentage of a population may get sick during an epidemic even though only a small percentage is sick at any one time?
- Explain briefly the key idea for finding solutions of an SIR model without finding explicit solution formulas.
- Describe briefly the meaning and significance of contact number.
- Describe briefly the meaning and significance of herd immunity. How can an inoculation program lead to herd immunity?
- The contact number for poliomyelitis in the U.S. in 1955 was 4.9. Explain why we have been able to eradicate this disease even though we cannot eradicate measles. Give a careful argument -- "smaller contact number" is an observation, not an explanation.
Link Artikel
- Model SIR untuk Penyebaran Penyakit - Latar Belakang
- Model SIR untuk Penyebaran Penyakit - Model Persamaan Diferensial
- Model SIR untuk Penyebaran Penyakit - Metode Euler
- Model SIR untuk Penyebaran Penyakit - Hubungan Parameter dengan Data
- Model SIR untuk Penyebaran Penyakit - Jumlah Kontak
- Model SIR untuk Penyebaran Penyakit - Kekebalan
- Model SIR untuk Penyebaran Penyakit - Ringkasan
Kategori
Arsip
- July 2023 (3)
- January 2023 (1)
- December 2022 (1)
- August 2022 (1)
- July 2022 (6)
- March 2022 (1)
- September 2021 (2)
- October 2020 (1)
- July 2020 (2)
- April 2020 (1)
- November 2019 (1)
- September 2019 (1)
- August 2019 (2)
- July 2019 (1)
- May 2019 (1)
- February 2019 (1)
- September 2018 (2)
- August 2018 (1)
- July 2018 (4)
- June 2018 (5)
- September 2017 (2)
- August 2017 (1)
- April 2017 (1)
- October 2016 (1)
- September 2016 (2)
- September 2015 (4)
- June 2015 (1)
Blogroll
- 01 Sistem Informasi Akademik
- 02 Repository UNG
- 03 Universitas Negeri Gorontalo
- 04 Beasiswa DIKTI
- 05 Beasiswa LPDP
- 06 BookFi
- 07 Indonesian Mathematical Society
- 08 EBSCOhost
- 09 Library Genesis
- 10 Khan Academy
- 11 Blog Pribadi
- 12 Twitter
- 13 Facebook
- 14 Pdf Drive
- 15 Pangkalan Data UNG
- 16 Differential Equation
- 17 Math is Fun
- 18 Jambura Journal of Mathematics
- 19 OSF
- 20 Sci-Hub
- 21 Researchsquare
- 22 Kalkulator Math
- 23 Gometa
- 24 Microsite
- 25 Wordwall
- 26 Science Direct
- 27 BSRE BSSN
- 28 OpenAI
- 29 Quillbot
- 30 Perplexity
- 31 Citation FInder